Would Canadians be safer from food-borne illnesses if all foods in Canada were irradiated before being sold to the public?

OVERVIEW
- **Subject Focus:** Science, Human Health, Food Safety, Physics
- **21st Century Skills Focus:** Critical Thinking, Communication, Collaboration
- **Lesson Context:** In the summer of 2008, luncheon meat contaminated with the bacteria *Listeria monocytogenes* caused the deaths of at least 20 people and the sickness of many others. As a result, a number of products were pulled from the market and the company lost millions of dollars as well.

Learning Goals
- Understands some of the ways that environmental factors, such as bacterial food contamination, can affect human health
- Understands the role that food irradiation can play in food safety
- Evaluates evidence and consider alternative perspectives, ideas, and explanations

Learning Activities
In this lesson, students will explore, and think critically about, the issue of food safety and the role that radiation can have in keeping food safe to eat. Students will do a group research project and an individual editorial writing assignment.

Big Idea
Food irradiation is a technology that has the potential to improve human health through improved food safety.

ASSESSMENT & EVALUATION

Prior Knowledge and Skills
- Awareness of food-borne illnesses
- Familiarity with the listeriosis outbreak of 2008
- Experience locating information using internet sources
- Experience working in cooperative small groups

Success Criteria
- Students participate in meaningful class discussions
- Student research demonstrates understanding of the science and issues involved in food irradiation

Assessment Strategies
- Review of student backgrounders
- Assessment of student op-eds using rubric

RESOURCES & MATERIALS
- **BLM - Food Irradiation Individual Writing Assignment** [.doc] [.pdf] – 1/student
- **BLM - Food Irradiation Backgrounder Rubric** [.doc] [.pdf] – 1/student
- **BLM - Food Irradiation Topic 1 Backgrounder Assignment** (includes suggested responses) [.doc] [.pdf]
- **BLM - Food Irradiation Topic 2 Backgrounder Assignment** (includes suggested responses) [.doc] [.pdf]
- **BLM - Food Irradiation Topic 3 Backgrounder Assignment** (includes suggested responses) [.doc] [.pdf]
- **BLM - Food Irradiation Topic 4 Backgrounder Assignment** (includes suggested responses) [.doc] [.pdf]
- Curriculum alignment [.html]
- Electronic device with internet access

©2014 Canadian Nuclear Association/Let’s Talk Science
http://teachnuclear.ca/
MINDS-ON

- With the whole class, introduce the concept of food irradiation by discussing the Listeria outbreak of 2008. Questions for discussion can include:
 - **What is listeriosis?**
 Listeriosis is an infection causing fever, nausea, diarrhea, headaches, etc.
 - **What causes it?**
 It is caused by the bacterium *Listeria monocytogenes*.
 - **In the 2008 Listeria outbreak, what did the bacteria contaminate?**
 They contaminated food – in this case, luncheon meats.
 - **Did anyone become ill or die during the 2008 outbreak?**
 As of the final update on April 17, 2009, there were 57 confirmed cases and 22 deaths where listeriosis was the underlying cause.
 - **Why were people so concerned?**
 Many people ate products made by the company which produced the infected meat.
 - **How do you think this could have been prevented?**

- Explain to students that one way to kill harmful bacteria on foods is through radiation. The students may have visceral reactions to this statement.

- Discuss with the students their thought on food irradiation. Questions for discussion can include:
 - **Would you buy foods exposed to radiation?**
 - **How would you feel about eating foods that had been irradiated?**
 - **How confident would you be that food that had been irradiated was safe to eat?**
 - **How important would it be for you to learn about food irradiation before eating food that had been irradiated?**
 - **Who do you think should provide you with information about food irradiation?**
 - **Do you think food irradiation is a good idea, a bad idea, or you don’t know enough about it to decide?**

- Have students brainstorm a list of energy sources used to generate electricity in Canada. Students should record these energy sources in their science notebooks. This list should include renewable (hydro, wind) and non-renewable (nuclear, natural gas, coal) energy sources. Discuss where they have seen examples of each in their province.

Action

- Organize students into groups of three or four. You may want to determine ahead of time which students will be in each group.

- Each of the small groups will research food irradiation, food safety and food-borne illnesses using the TeachNuclear and other web sites from an assigned perspective (see topics below).

- Assign each group to one of the four topics.
 - **Topic 1 – Economic Impact**
 - **Topic 2 – Technology and the Food Irradiation Process**
 - **Topic 3 – Public Health and Disease Prevention**
 - **Topic 4 – Public Safety and Regulations**

Misconception Alert

Students may initially believe that irradiation is the same as contamination. When x-rays, gamma rays or electron beams have irradiated something, the irradiation stops as soon as the source of ionizing radiation has been removed or terminated. When radioactive contamination occurs, the source of the ionizing radiation itself is transferred to the substance.
• Have students find their group members.
• Hand out the Backgrounder Assignment BLMs to the groups and have the students read over the questions for their topic that will help guide their research.
• Each group will produce a one-page “Backgrounder” of their research. This “Backgrounder” will later be shared with students in the other groups for the Individual Writing Assignment.
• Once the assignments have been handed in, photocopy a class set of each group’s “Backgrounders.” Give the copies to the students, or post on a student portal for the class.

Implementation Options
• Students could choose the topic that they are most interested in. However, if this occurs, ensure that each topic is chosen by at least one group. If you have a large class, multiple groups could choose the same topic.
• You may choose to only use 1, 2 or 3 of the topics instead of all 4. What you choose may also depend on your curriculum requirements.
• Have students read the Food Irradiation section of the TeachNuclear web site and complete the worksheet before beginning their research.
• Omit the whole class sharing and require students to read all of the “Backgrounders” online before handing out the individual assignment.

CONSOLIDATION Suggested Timing: 30 minutes
• Provide each group with two minutes to report what they learned about their topic. If there are multiple groups per topic, have subsequent groups only add new information.
• Students will participate in an individual writing assignment. The purpose of the assignment is to help answer the Key Question. Based on the background research from all of the groups’ Backgrounder, as well as their own critical thinking and decision-making skills, students will each communicate their recommended alternative and course of action with regard to the irradiation of food in the form of an op-ed piece (see the Individual Writing Assignment and Rubric BLM for a description of an op-ed piece).
• Each student will be required to construct arguments and defend his/her position on the issue of food irradiation using examples and evidence and recognizing the various perspectives discussed in class. Each student will also be required to propose a course of action on this issue taking into account human needs.

Implementation Option
• Instead of writing an op-ed piece, the students could present their findings in an oral presentation or they could debate the Key Question.

EXTENSIONS
• Complete a class survey in order to find out which students were for food irradiation and which students were against it.
• Students may wish to submit their op-ed pieces to their school newspaper or post on their class portal.
ADDITIONAL RESOURCES — Canadian Nuclear Association

TeachNuclear Web pages
- Irradiation vs Contamination
- Food Irradiation

Related TeachNuclear Lesson Plans
- Nuclear in Our Lives Jeopardy

ADDITIONAL RESOURCES — CurioCity by Let’s Talk Science

Videos
- What is Radiation? (CNSC)

BACKGROUND/ADDITIONAL INFORMATION

- Canadian Food Inspection Agency – Causes of Food Poisoning (Retrieved Dec. 4, 2014)
 This page has links to information about common causes of food poisoning, including Listeria.
- Canadian Food Inspection Agency – Food Irradiation (Retrieved Dec. 4, 2014)
 This page has information about food irradiation, labelling, types of foods irradiated in Canada and food safety.
- Canadian Food Inspection Agency – Irradiated Foods (Retrieved Dec. 4, 2014)
 This page explains the requirements for food labelling for irradiated foods in Canada.
- Health Canada Food and Nutrition – Food Irradiation (Retrieved Dec. 4, 2014)
 This page has information about the foods which are currently irradiated and reviews of proposed new uses of food irradiation as well as answers to frequently asked questions.
- Health Canada Food and Nutrition – Food-related Illnesses (Retrieved Dec. 4, 2014)
 This page has information about a variety of food-related illnesses including infant botulism, listeriosis and salmonellosis.
 This page has information about Listeria and Food Safety for Ready-to-Eat Food.
- Public Health Agency of Canada – Listeriosis (Listeria) Outbreak (Retrieved Dec. 4, 2014)
 This page (archived) has links to updates from 2009 and 2010 including a Listeriosis Investigative Review and an Update to 2008 Listeria monocytogenes numbers.
 This update (archived), from the Public Health Agency of Canada, summarizes the confirmed cases, including deaths, from the listeriosis outbreak during the summer of 2008.
 This page (archived) discusses the Canadian Government Response to the listeriosis outbreak of 2008.