Understanding Isotopes Application Questions Answer Page

1. A naturally occurring sample of potassium contains 93.12% of the isotope potassium-39 and 6.88% of the isotope potassium-41. Calculate the average atomic mass for this sample.
${ }^{39} \mathrm{~K}, 0.9312 ;{ }^{41} \mathrm{~K}, 0.0688$
Average atomic mass $=\left(\right.$ mass ${ }^{39} \mathrm{~K} \times$ fraction $)+\left(\right.$ mass ${ }^{41} \mathrm{~K} \times$ fraction $)$

$$
\begin{aligned}
& =(39 \times 0.9312)+(41 \times 0.0688) \\
& =36.3168+2.8208 \\
& =39.1376
\end{aligned}
$$

The average atomic mass of potassium is 39.1376 u .
2. Calculate the average atomic mass of magnesium if the abundances making up a naturally occurring sample are: magnesium-24 (78.70\%), magnesium-25 (10.13\%), magnesium-26 (11.17\%)
${ }^{24} \mathrm{Mg}$, fraction $_{1}=0.787 ;{ }^{25} \mathrm{Mg}$, fraction $_{2}=0.1013 ;{ }^{26} \mathrm{Mg}$, fraction $_{3}=0.1117$
 fraction ${ }_{3}$)
$=(24 \times 0.787)+(25 \times 0.1013)+(26 \times 0.1117)$
$=18.888+2.5325+2.9042$
$=24.3247$
The average atomic mass of magnesium is 24.3247 u .
3. Naturally occurring uranium is composed of three major isotopes: uranium-238 (99.28\%), uranium-235 (0.71%) and uranium-234 (0.0054%). Calculate the average atomic mass of uranium.
${ }^{238} \mathrm{U}$, fraction $1=0.9928 ;{ }^{235} \mathrm{U}$, fraction $_{2}=0.0071 ;{ }^{234} \mathrm{U}$, fraction $_{3}=0.000054$
Average atomic mass $\left.=\left(\text { mass }^{238} \mathrm{U} \times \text { fraction }\right)_{1}\right)+\left(\right.$ mass $^{235} \mathrm{U} \times$ fraction 2$)+\left(\right.$ mass $^{234} \mathrm{U} \times$ fraction ${ }_{3}$
$=(238 \times 0.9928)+(235 \times 0.0071)+(234 \times 0.000054)$
$=236.2864+1.6685+0.0126$
$=237.9675$
The average atomic mass of uranium is 237.9675 u .
4. The average atomic mass of copper is 63.545 u (unified atomic mass). It is made up of two isotopes: copper-63 (atomic mass 62.930) and copper-65 (atomic mass 64.928). What must be the relative abundance (in \%) of each of these isotopes in naturally occurring samples of copper?

Average atomic mass $=63.545 ;{ }^{63} \mathrm{Cu}=62.930$, fraction ${ }_{1}=$ fraction ${ }_{1} ;{ }^{65} \mathrm{Cu}=64.928$, fraction $_{2}=$ (1- fraction ${ }_{1}$)
Average atomic mass $\left.=\left(\text { mass }^{63} \mathrm{Cux} \text { fraction }\right)_{1}\right)+\left(\right.$ mass $^{65} \mathrm{Cux}$ fraction $\left.{ }_{2}\right)$
$63.545=\left(62.930 \times\right.$ fraction $\left._{1}\right)+\left(64.928 \times\left[1-\right.\right.$ fraction $\left.\left._{1}\right]\right)$
$63.545=62.93 \times$ fraction $_{1}+64.928-64.928 \times$ fraction $_{1}$
$63.545-64.928=62.93 \times$ fraction $_{1}-64.928 \times$ fraction $_{1}$
$-1.383=-1.998 \times$ fraction $_{1}$
fraction ${ }_{1}=0.6922$ or 69.22% of ${ }^{63} \mathrm{Cu}$
fraction $_{2}=\left(1-\right.$ fraction $\left._{1}\right)=(1-0.6922)=0.3078$ or 30.78% of ${ }^{65} \mathrm{Cu}$
The relative abundance of copper-63 is 69.22% and the relative abundance of copper- 65 is 30.78\%.
5. The average atomic mass of carbon is 12.011 u . It is made up of two stable isotopes: carbon-12 and carbon-13. What must be the relative abundance (in \%) of each of these isotopes in naturally occurring samples of carbon?

Average atomic mass $=12.011 ;{ }^{12} \mathrm{C}=12$, fraction $_{1}=$ fraction $_{1} ;{ }^{13} \mathrm{C}=13$, fraction $_{2}=(1-$ fraction ${ }_{1}$)
Average atomic mass $=\left(\right.$ mass $^{12} \mathrm{C} x$ fraction $\left.{ }_{1}\right)+\left(\right.$ mass $^{13} \mathrm{C} \times$ fraction $\left.{ }_{2}\right)$
$12.011=\left(12 \times\right.$ fraction $\left._{1}\right)+\left(13 \times\right.$ [1- fraction $\left.\left.n_{1}\right]\right)$
$12.011=12 \times$ fraction ${ }_{1}+13-13 \times$ fraction $_{1}$
12.011-13 = $12 \times$ fraction $1-13 \mathrm{x}$ fraction 1

- $0.989=-$ fraction 1
fraction $_{1}=0.989$ or 98.9% of carbon-12
fraction $_{2}=\left(1-\right.$ fraction $\left._{1}\right)=(1-0.989)=0.011$ or 1.1% of carbon-13
The relative abundance of carbon-12 is 98.9% and the relative abundance of carbon-13 is 1.1\%.

